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TEMPERATURE FLUCTUATIONS IN A DISPERSE MEDIUM

L., K, Vasanova, A, I, Safronov, UDC 541,182:536-12,2;621,1,016
and G. P, Yasnikov

Large-scale temperature fluctuations in a thermally nonuniform disperse medium are analyzed
by the methods of the thermodynamics of irreversible processes, Calculated results are com-
pared with experimental data,

By participating in motions of various scales, particles of a thermally nonuniform disperse medium can
"transport temperature™ as an inert scalar admixture, Consequently, in certain regions of the system local
large scale temperature fluctuations will arise with intensities appreciably greater than the level of equilibrium
thermal agitation, Convective heat transfer between particles and the continuous medium must affect the dis-
sipation of these fluctuations, The damping of large-scale fluctuations can be analyzed within the framework
of the thermodynamics of irreversible processes (TIP), the thermodynamic theory of which was developed in
[1] and discussed in detail in [2], The theory was applied to hydrodynamic fluctuations in [3, 4].

The correlation function of temperature fluctuations T' can be written in the form
7
1 s ’ Ty . I P
)=t —t) =<' T {t)>=<T{OT{#)> =lim —T_S T/ T (" dt', T— oo, 1)
e

where <,,.> denotes probability averaging of all possible values of T' at times t and t', T' is the average
value of T' for t > 0 under the condition that this quantity had a given value T' at t = 0, Thus ¢(t) takes account
of the previous history of the system from t =—» tot = 0,

We consider the damping of temperature fluctuations T' of a continuous medium and Ty' of particles by
TIP methods [1, 2, 5]. The phenomenological equation for them can be written in the form [2]

. ' T’
X = — MX, X = , j . (2)
Ty
The matrix M is evaluated in [6]:
M= aCt—a,C1 ’ Ot = 6o (1 —¢) ) G = 60 ’ @)
— a,Cr! aCr doce apey
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where o4 = 6a(l — g)/d is the heat-transfer coefficient between liquid and particles per unit volume of the
mixture, The dynamic equation for the correlation matrix ¢ is obtained from (2) by replacing x by ¢:

¢ = — Mg, (p:(

\

<TUHWQ><ﬂ%wTM®>>‘ @
<T; ()T (O)> <Ti(}) 71 (0)>

The solution of this equation can be written in the form

9(1) = e (0). (5)

Taking account of (3),'Eq. (4) for the correlation function of the particle temperature fluctuations has the form

6o
dpycy

.@;z = (Ps2 — ©4)- (6)

@y K Py
6

Pzz = P2 (0) e o (7)

Taking account of ¢, complicates the problem considerably. This is investigated in detail in [7], In an adi-
abatic system the attenuation of correlations will be characterized solely by the relaxation time 7 [6]:

¢=(0)et/7, (8)
where
1‘1:SpM:—§E- 1 4 l—e _1_> (9)
d \ poy & oc
The relation T;' = —C/C;T' for adiabatic conditions was used in deriving (8) and (9),

We now consider quasistationary temperature fluctuations relative to a given distribution of the average
<T> temperatureof a disperse system, This problem was studied in detail in [5, 8, 9] for a single-phase
medium. It was shown that the behavior of a fluctuating temperature field is closely related to the properties
of the local potential, For a disperse system we write it in the form

Fer 1 .. P<T '

Lr = ff[—f(VT)“r*T -, a<;>]dtdv. (10)
o
0V

ko o ky

By varying (10) with respect to T for a fixed average temperature distribution, and then setting T = <T>, we
obtain the hyperbolic heat-conduction equation for a disperse medium
02T oT

k2 = key?T. (11)
Py + Ry £y oVoL -
This equation (in the more general case, taking account of the relaxation of the heat flux) was derived by statis-
tical methods in [10], and by the TIP relaxation formalism in [11]. The coefficients k; and k; in (11) are equal,
respectively, to

k= C+G ) ko= M , sz——————p‘cid . 12)

C'L'g o C'L'i . 6

The change of the fluctuating component will also be described by Eq, (11):

0T’ o7’
atz + kl —(;t*—' == koVZT- (13)

By generalizing the definition of the correlation function (1) it is easy to derive from (13) the dynamic equa-
tion for ¢ (v, t) = <T'(x, t)T'{(0,0)>, To do this it is necessary purely formally to replace T' by ¢ in (13)
{1, 41:
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Fig. 1. Correlation function of tem-
perature fluctuations in a fluidized
bed.,

g o9 _
pre 4 kg — o = koV?9. o (19)

We note that (14) is the Euler —Lagrange equation for the local potential L (10) in which the temperature T is
replaced by ¢:

» 1 Fol® b (™
L‘szj[?(w +———q> 0"’ —I—k—’(p—«%———} dtdv; (15)
[1]
oV .

<p(°) is not varied, Functional (15) for the construction of various approximate solutions of Eq. (4) was studied
in [12].

We investigate the single-point time correlation function of temperature fluctuations by using Eq. (14).
We write ¢(t, r) in the form

@{t, r)=[(?)8(r). (16)
Substituting (16) into (15) and integrating over the volume, we obtain
r CFO | kB, OO
L, = AP+ dt,
! ” f kof a2 +kofat) (17)
o .
where
A= [wemrav; B= | e, (18)
Vv v

£0) is not varied, Varying (17) with respect to f and setting #9) = £, we have

*f f -
o Ryt kef 0. (19) )
The solution of this equation has the form
1
f=e 2 Bat (E; cos wf - & sin ot), (20)
where
1 A

Determining (—31 and 52 from the system
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o= 10, FO)= ——;kic‘ﬁrmé;, ;= “%

and taking account of (16), we have finally

. ,
= Rl (cos of + Ek‘— sinw it]) . (22)
)

9(r. 1)

—  T'(r, 0P>=[(0)0(r) is the mean-square temperature fluctuation at point r,
=T, 0p= (r, 0) F(0)8(r) q p p

Here ¢ (f) =

Expanding (22) in a Maclaurin series and retaining second-order terms, we determine the time scale of
the correlations by the relation [13]

S ) R N (_k.1~>2]
= 2 ( iz )t:o 2 [‘” ) (23)

The quantity 7 is a measure of the most rapid changes of temperature fluctuations,

Temperature fluctuations were experimentally investigated in a fluidized bed [14]. Small Alundum beads
were liquefied by water in an annular channel with an inner wall which could be heated, Temperature fluctua-
tions at various points in the bed were measured with a thermocouple probe, and after amplification were
recorded by a loop oscillograph., The oscillograms were processed on an F-001 analog—digital converter,
Figure 1 shows a typical correlation function calculated from the experimental data on a Minsk-22 computer,
It is clear that it is approximated by Eq, (22),

We present some estimates, The time scale of correlations for the data shown in Fig, 1 is 7 = 0.074
sec, and the frequency of oscillations is w ~ 7,6 sec~!, The damping constant of correlations calculated from
(23} is ky = 35 sec™!, We used this value and Eqgs, (3) and (12) to calculate the dimensionless heat-transfer
coefficient Nu = ad/A = 48, The L, K, Vasanov dimensionless relation [15] gives

Nu = 0,35 Re?:8Pr0-33 = 61,
while that of Franz gives
Nu = 0,006 Re! -3Pr0.33 = 5],

The following experimental and tabulated data were used in the calculations: w = 0,187 m/sec, £ = 0.9, d = 1,38 %
10-* m, v= 0,805 x 107% m?/sec, A = 0,62 W/m «°K, Pr = 5,42, T = 303°K, p; = 3590 kg/m?, p = 998 kg/m3, ¢, =
0.8 kJ/kg *°K, ¢ = 4,17 kd/kg « °K,

It should be noted that high porosities & ~ 0.9 were used in the experiments for purely technical reasons,
Under these conditions the dimensionless relations can be employed only to estimate the order of magnitude of
Nu, Nevertheless, the results obtained give us confidence that the theoretical model of correlations of tempera-
ture fluctuations in a disperse medium represents the basic features of large scale fluctuations.

NOTATION

t, time; r, coordinates; ¢(t), correlation function; x = T'/Ty', temperature fluctuations; C, Cy, heat
capacities of liquid and particles per unit volume of mixture; M, o, quantities defined in (3); «, heat-transfer
coefficient; €, porosity; d, particle diameter; p;, p, densities of particle material and liquid; ¢, ¢, specific
heats; ¢, correlation matrix; 7, relaxation time of system; 7, particle relaxation time; A*, thermal conductiv~
ity of disperse medium; A, thermal conductivity of liquid; V, volume of system; L, Lq,, local potentials: ky,
ko, coefficients defined in (12); T, temperature; A, B, coefficients defined in (18); w, frequency; Tg, time scale
of correlations; Re, Reynolds number; Pr, Prandtl number; Nu, Nusselt number; w, rate of filtration; v, kinema-
tic viscosity, Subscript 1 refers to dispersed phase; a dot denotes the time derivative,
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HYDRAULIC DRAG DUE TO DIVISION OF A STREAM OF
FLUID INTO TWO PARALLEL CHANNELS WITH AN
ARBITRARY RATIO OF FLOW RATES

A, D. Rekin UDC. 532,542

An expression is derived for the hydraulic drag and results of calculations are compared with
experimental data,

The magnitude of the hydraulic drag at the inlet due to local separations of the stream during transfer of
a liquid (or gas) from one channel to another can in many cases be found in [1], As a rule, formulas recom-
mended on the basis of experimental data are valid when the total flow rate remains constant during transfer
from one channel to another, The theoretical solution obtained for straight channels of uniform cross-sectional
area [2] and confirmed by results of experiments is valid only under that condition. There are semiempirical
approximate relations available for determining the hydraulic losses which occur when a separate jet of fluid
flows out of a stream (or into a stream) through a lateral channel at a given rate, at a given angle, and across
a given area [1], These formulas are, however, not sufficiently accurate for the simpler limiting cases such as,
e.g2., 2 zero exit angle or a zero flow rate through the lateral channel,

Here will be presented a theoretical solution to the problem, in the one~dimensional formulation, for
determining the loss of total pressure due to entrance of a gtream into a straight channel of uniform cross
section from another one with a larger cross section, The smaller channel is completely inside the larger one
and it takes up some arbitrary fraction of the total fluid flowing through the larger one (Fig. 1). A fluid here
will include gases as well, but the effects of compressibility will be disregarded (Mach number Nyjg <« 1), The
hypothetical streamline along which the stream divides is indicated by dashes. The cross-sectional area of the
stream, the pressure, the velocity, and the density of the fluid in channel 1 under steady state conditions (sec-
tion 1-2) will be denoted as ¥y, py, uy, and p;, respectively, and the corresponding parameters in channel 2 as
Fy, Py, Uy, pg, respectively. In the segment of the initial stream in section 0—0 which subsequently enters
channel 1 we denote the corresponding parameters as Fy;, Py, Uy, Po1;inthe segment of the initial stream in this
same section 0 —0 which subsequently enters channel 2 we denote the corresponding parameters as Fyy, Pys Wye»
pgae The pressure, the velocity, and the density are assumed to be uniform within each thus defined segment of
the stream cross section, The thickness of the layer between dividing stream segments is assumed to be zero,
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